拆分有理函数的步骤是:因式分解$\to$求系数。且求系数的方法有待定系数法,而今天我要交给大家的是一个更加快速的方法,留数法!
1. 因式分解
$$ \begin{align} &\frac{1}{\left(x+a\right)\left(x+b\right)}=\frac{A}{x+a}+\frac{B}{x+b}\\ &\frac{1}{\left(x+a\right)\left(x+b\right)\left(x+c\right)}=\frac{A}{x+a}+\frac{B}{x+b}+\frac{C}{x+c}\\ &\frac{1}{\left(x+a\right)\left(x+b\right)\left(x+c\right)}=\frac{A}{x+a}+\frac{B}{x+b}+\frac{C}{x+c}\\ &\frac{1}{\left(x+a\right)\left(x+b\right)^{2}}=\frac{A}{x+a}+\frac{B}{x+b}+\frac{C}{\left(x+b\right)^{2}}\\ &\frac{1}{\left(x+a\right)\left(x^{2}+bx+c\right)}=\frac{A}{x+a}+\frac{Bx+C}{x^{2}+bx+c}\\ &\frac{1}{\left(x^{2}+ax+b\right)\left(x^{2}+cx+d\right)}=\frac{Ax+B}{x^{2}+ax+b}+\frac{Cx+D}{x^{2}+cx+d}\\ &\frac{1}{\left(x+a\right)\left(x^{2}+bx+c\right)^{2}}=\frac{A}{x+a}+\frac{Bx+C}{x^{2}+bx+c}+\frac{Dx+E}{\left(x^{2}+bx+c\right)^{2}}\\ &\frac{1}{\left(x+a\right)^{2}\left(x^{2}+bx+c\right)^{2}}=\frac{A}{x+a}+\frac{B}{\left(x+a\right)^{2}}+\frac{Cx+D}{x^{2}+bx+c}+\frac{Ex+F}{\left(x^{2}+bx+c\right)^{2}} \end{align} $$
2.留数法
口诀:先化首一型,求谁遮谁
例1:拆分$\displaystyle f(x)=\frac{x+3}{(x+1)(x+2)}$
先对其因式分解:
$$ f(x)=\frac{x+3}{(x+1)(x+2)} = \frac{k_1}{x+1}+\frac{k_2}{x+2} $$
使用留数法求系数 $k_1,k_2$:
$$ \begin{align*} &k_1 = \lim_{x\to-1}(x+1)f(x) = 2\\ &k_2 = \lim_{x\to-2}(x+2)f(x) = -1 \end{align*} $$
则
$$ f(x) =\frac{2}{x+1}-\frac{1}{x+2} $$
例2:$\displaystyle f(x)=\frac{x+3}{(x+1)^{2}(x+2)}$
先对其因式分解:
$$ f(x)=\frac{x+3}{(x+1)^{2}(x+2)} = \frac{k_1}{(x+1)^2}+\frac{k_2}{x+1}+\frac{k_3}{x+2} $$
使用留数法求系数 $k_1,k_3$:
$$ \begin{align*} &k_1 = \lim_{x\to-1}(x+1)^2f(x) = 2\\ &k_3 = \lim_{x\to-2}(x+2)f(x) = 1 \end{align*} $$
使用特值法求系数 $k_2$:
$$ \begin{align*} \frac{0+3}{(0+1)^{2}(0+2)} = \frac{2}{(0+1)^2}+\frac{k_2}{0+1}+\frac{1}{0+2} \end{align*} $$
得 $k_2 = -1$,则
$$ f(x) =\frac{2}{(x+1)^2}-\frac{1}{x+1}+\frac{1}{x+2} $$
例3:$\displaystyle f(x)=\frac{x+3}{(x+1)^{3}(x+2)}$
先对其因式分解:
$$ \displaystyle f(x)=\frac{x+3}{(x+1)^{3}(x+2)} =\frac{k_1}{(x+1)^3}+\frac{k_2}{(x+1)^2}+\frac{k_3}{x+1}+\frac{k_4}{x+2} $$
使用留数法求系数 $k_1,k_2,k_3,k_4$:
$$ \begin{align*} & k_1 = \lim_{x\to-1}(x+1)^3f(x) = 2\\ & k_2 = \lim_{x\to-1}\left[(x+1)^3f(x)\right]' = \lim_{x\to-1}\frac{-1}{(x+2)^2}=-1\\ & k_2 = \frac{1}{2!}\lim_{x\to-1}\left[(x+1)^3f(x)\right]'' = \lim_{x\to-1}\frac{1}{(x+2)^3}=1\\ & k_4 = \lim_{x\to-2}(x+2)f(x)=-1 \end{align*} $$
则
$$ f(x) =\frac{2}{(x+1)^3}-\frac{1}{(x+1)^2}+\frac{1}{x+1}-\frac{1}{x+2} $$
例4:$\displaystyle f(x)=\frac{x+3}{(2x+1)(x^2+2x+2)}$
先对其因式分解:
$$ \displaystyle f(x)=\frac{x+3}{(2x+1)(x^2+2x+2)}=\frac{x+3}{2(x+\frac12)(x^2+2x+2)}=\frac{k_1}{x+\frac{1}{2}}+\frac{k_2x+k_3}{x^2+2x+2} $$
使用留数法求系数$k_1$:
$$ \begin{align*} & k_1 = \lim_{x\to-\frac{1}{2}}(x+\frac{1}{2})f(x)=1\\ \end{align*} $$
使用特值法求系数$k_2,k_3$:
令 $x=0$ 得:
$$ \begin{align*} \frac{3}{2}= \frac{1}{0+\frac{1}{2}}+\frac{0+k_3}{0+2} \end{align*} $$
则 $k_3=-1$,令 $x=1$ 得:
$$ \begin{align*} \frac{4}{15}= \frac{1}{1+\frac{1}{2}}+\frac{k_2-1}{1+2+2} \end{align*} $$
则 $k_2=-1$,则
$$ f(x)=\frac{2}{2x+1}-\frac{x+1}{x^2+2x+2} $$
留数法可以提高我们计算的速度,但是遇到高阶的函数不易计算,有时候结合特值法会更加方便!